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1. Introduction and summary of results

The thermodynamical interpretation of classical gravity in asymptotically AdSd spaces [1 –

4] predicts a maximal temperature for a gas of thermally excited strings (the Hawking-

Page temperature [5]). At temperatures higher than the HP temperature the gas of strings

collapses into a black hole via a first order phase transition. If we keep the gas of strings

in an overheated metastable phase (preventing the HP phase transition) while raising

the temperature, we will eventually reach the Hagedorn temperature where the gas of

strings must collapse into a black hole because the barrier disappears and a tachyonic

mode appears [6 – 9]. This tachyon is similar to the Atick-Witten tachyon [10] in flat space,

which is associated with the Hagedorn temperature for that configuration.

In this paper we explore both the Atick-Witten and Hagedorn phase transitions in

asymptotically AdS3 spaces using the exact, in α′, worldsheet description (for the most
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part). For both thermal AdS3 and Euclidean BTZ the boundary of spacetime looks like a

radial direction×S1
t ×S1

θ where t is the Euclidean time direction and θ an angular variable.

In TAdS3 the radial direction and S1
θ combine to form a 2-dimensional disk and in the

Euclidean BTZ the radial direction pairs up with S1
t . Above the Hagedorn temperature

a winding mode tachyon appears around the t direction. It is generally believed, and has

been argued in various ways (for example [6 – 9, 12 – 14]) that such a tachyon causes the

t circle to pinch, changing the topology of the background to that of BTZ, to which the

system then relaxes.

This is a compelling scenario, but following this topology change in details is rather

complicated, as one needs to follow the flow of the worldsheet through this topology change

in which the tachyon mixes with, or induces, metric deformations. What is sometimes done

for this case is either to argue the effects of the tachyon based on general worldsheet RG

properties, or to describe the two topologies using a Ricci flow, which either ends or starts

from a singularity - when the topology change occurs - and to glue the two flows at the

singularity in a somewhat ad-hoc (although correct) manner [15].

There are many works on closed string tachyon condensation. It is common to distin-

guish localized closed string tachyons and bulk closed string tachyons. The former have a

relatively mild effect as they deform the geometry in the vicinity of the region in which they

are localized, usually capping the geometry and making a small part of space disappear.

This process may be followed by emission of some perturbative massless and massive bulk

modes. For references on the subject of closed string tachyon condensation see [9, 11, 16, 17]

and references therein.1 Bulk tachyons, on the other hand, are much harder to understand,

and their condensation is expected to reduce the number of space time dimensions [23],

as a consequence of the Zamolodchikov c-theorem [22]. The tachyons that are relevant for

phase transitions in AdS spaces are either localized tachyons or de-localized for AdS3 with

NS-NS fields (which nevertheless have effects similar to localized tachyons).

In this paper we take some steps towards improving the understanding of the flow

around the topology change point. The immediate context which we will discuss is the

Hawking-Page and Hagedorn phase transitions in AdS3, where we can rely on the notion

of a dual CFT, but we expect that a similar set of tools will be useful to discuss topology

change in more general cases. The main idea is to convert the background geometric data

into a tachyon condensation problem, like in the FZZ duality [24]. The problem then

reduces to a simpler problem of comparing the strength of the ”geometric” tachyon wall

with the strength of the new Atick-Witten-like tachyonic wall. This can be made very

precise in the case of TAdS3/BTZ which is what we will do next.

Strings propagating in AdS3 are described by the SL(2, R) WZW model. To describe

the thermal gas of strings we use the Euclidean version of the CFT (the H+
3 model) and

compactify the Euclidean time coordinate. By a sequence of T-dualities we bring this space

1For a review of tachyon condensation in a cosmological context see [18] and [19]. Phase transitions to

bubbles of nothing in AdS5 which are driven by winding tachyons were discussed in [20, 21].
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to the form of a cigar × S1 which is simply the coset

SL(2, R)

U(1)
× U(1)

(with some important gluing conditions). By applying an FZZ duality the theory is mapped

into a sine−Liouville× S1, which is a linear dilaton× S1 × S1 with an interaction term

coupling the Liouville mode (φ) with a winding mode around the circle related to a spatial

angle x which is roughly the angular direction of AdS3,

ebφ cos Rx(xL − xR).

On the other hand, the Atick-Witten thermal tachyon is a winding mode around

another circle ϕ, which is roughly the Euclidean time direction t, and it is of the form

eb′φ cos Rϕ(ϕL − ϕR)

This achieves the goal of putting both metric and tachyon deformations on the same footing

in a manifest way, which simplifies considerably the analysis of the topology change point.

For example, the phase transition between the thermal gas and black hole is a competition

(by RG flow) between two sine-Liouville interaction terms, both including winding modes

but on different circles. More generally, this method provides us with a “unified” description

of the various backgrounds in which phases and phase transitions of different kinds are

treated similarly. These include the Hawking Page phase transition, the Hagedorn phase

transition and the fixed points that exist between them.

At the end of the day, this dynamics is controlled by computing dimensions of some

specific operators in sine-Liouville theory (which we review in section 4.1). In the case

that these operators are irrelevant, they drive a geometric capping (and a new CFT) by

turning them on with a large coefficient which corresponds to a first order phase transition

in spacetime. The other case, when they are marginal or relevant, is the case beyond

the Hagedorn temperature, where their condensation is exactly the Atick-Witten tachyon

condensation.

Another result of our investigations is the surprising understanding that thermal AdS3

and the BTZ black hole at the same temperature have a pathological canonical thermody-

namic descriptions if embedded in String theory (unlike the case in pure gravity). However,

they are expected to have well defined micro-canonical description.

The paper is organized as follows: In section 2 we briefly review known results concern-

ing String theory on thermal AdS3. section 3 is devoted to the calculation of the Hagedorn

temperature for AdS3, clarification of the phase diagram and discussion of some special

phenomena which take place at strong curvature. section 4 and section 5 contain the main

results. In section 4 we explain the mapping of the thermal theory into a cigar×S1. Then,

applying FZZ duality, we map the theory into sine − Liouville × S1 where it is manifest

that String theory treats equally geometric and tachyonic capping. section 5 contains a

discussion of the properties of the unstable fixed point (CFT) which separates the black

hole and thermal AdS phases, as well as a discussion of the possible flows in the system.

– 3 –
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We conclude in section 6 with a discussion of open questions and propose directions for

future research.

We would like to thank Shiraz Minwalla and Vadim Shpitalnik for collaboration at

early stages of this work. After this work was completed, we received a draft of [25] which

overlaps with some of the results in section 3, and [26] which discusses the Lorentizan BTZ.

2. Review

2.1 Solutions of Euclidean gravity

The Euclidean AdS3 manifold is the 3 dimensional hyperbolic space H+
3 (which is the

analytic continuation of SL(2, R), and can be represented as SL(2, C)/SU(2)), i.e the space

of Hermitian unimodular matrices

X =

(

X−1 + X1 X2 + iX3

X2 − iX3 X−1 − X1

)

Xi ∈ R detX = 1. (2.1)

The manifold has an SL(2, C) isometry group acting on it as X → AXA+ where A ∈
SL(2, C). Throughout the paper we use global coordinates for AdS3

X = e
i
2
(−it+θ)σ2

eρσ3
e

i
2
(−it−θ)σ2

, (2.2)

where the σi are Pauli matrices. The line element is given by the square of the Maurer-

Cartan form

ds2 =
k

2
Tr

(

X−1dX
)2

= k
(

cosh2 ρ dt2 + dρ2 + sinh2 ρ dθ2
)

, (2.3)

where k is the AdS3 radius squared.2 In the Euclidean theory, one can make the coordinates

t and θ periodic,

θ ∼= θ + 2π t + iθ ∼= t + iθ − 2πi τ ; τ ≡ i
β

2π
(1 + iµ) , (2.4)

such that at the conformal boundary ρ → ∞, the geometry is a T2 with modular parameter

τ . We use the name thermal AdS3 (or TAdS3) for such a geometry with finite τ . The

parameters β and µ in (2.4) are correspondingly the inverse temperature and chemical

potential of the canonical thermodynamic ensemble.

The H+
3 WZW CFT describing strings propagating in TAdS3 includes a constant

dilaton (with arbitrary value) and an imaginary B-field,

H(3) = dB(2) = −2ik sinh(2ρ)dρ ∧ dt ∧ dθ. (2.5)

The B-field is imaginary due to the analytic continuation from the Lorentzian geometry

where the B-field is real. The Euclidean worldsheet action, on the other hand, is real due

to the additional factor of i from the analytic rotation of the worldsheet time.

2throughout the paper we use units in which α′ = 1.
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In gravity, the canonical ensemble contains all Euclidean gravity solutions which have

the same boundary geometry (including H-field) up to diffeomorphisms. To find the classi-

cal GR solutions contributing to the ensemble it is convenient to start from the Lorentzian

AdS3 (the SL(2, R) group manifold) and construct new gravity solutions by orbifolding

with elements of the isometry group. The interesting orbifolds are classified by conjugacy

classes of SL(2, R), of which there are three types3 which generate three distinct types of

orbifolds. The Z orbifolds generated by elements in the hyperbolic class are the BTZ black

holes geometries. These are the only orbifolds which have a smooth Euclidean continuation

with finite parameter τ . The various orbifolds (by elements of SL(2, R)) form a complete

classification of solutions to 2+1 dim GR with constant negative curvature [27, 28].

The Euclidean BTZ (EBTZ) solutions (which are Z orbifolds of H+
3 ) are commonly

expressed in Schwarzschild coordinates [27, 28] with periodicities (2.4),

ds2 = N2dt2 + N−2dr2 + r2 (dθ + Nθdt)2

N2 =
(r2 − r2

+)(r2 + r2
−)

k2 r2
Nθ =

r+r−
r2

r+ = −k Im
1

τ
r− = k Re

1

τ
.

The modular parameter τ is related to the Lorentizan BTZ black hole mass and angular

momentum via,

M =
r2
+ + r2

−
k2

=

∣

∣

∣

∣

1

τ

∣

∣

∣

∣

2

J =
2r+r−

k
= −k

2
Im

(

1

τ2
− 1

τ̄2

)

. (2.6)

Maldacena and Strominger [29] argued that, starting from a TAdS3 with modular

parameter τ , there exists an SL(2, Z) family of solutions4 which at infinity have the modular

parameter τ . The construction is as follows - start with the H
+
3 manifold (Euclidean AdS3)

orbifolded by a SL(2, C) elements of the isometry group, generating a TAdS3 solution with

modular parameters τ . The SL(2, C) element generating this orbifold is

H =

(

eiπτ 0

0 e−iπτ

)

.

Consider another element of SL(2, C) generating TAdS3 with conformal parameter τ ′ such

that there is an SL(2, Z) transformation connecting these two modular parameters,

τ ′ =
aτ + b

cτ + d
;

(

a b

c d

)

∈ SL(2, Z). (2.7)

Then, there exists a coordinate transformation which acts on all coordinates, but in par-

ticular it performs an SL(2, Z) transformation near the boundary, changing the modular

3The number of conjugacy classes is infinite and labeled by the trace of the SL(2, R) matrix. It is

convenient to divide them to hyperbolic, parabolic, and elliptic Tr(M) >=< 2 respectively.
4Which can perhaps also be constructed by using the technique described in this paper of applying

different sine-Liouville caps on different cycles of the T
2.
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parameter from τ ′ to τ . Thus, for a given modular parameter τ which defines the ensem-

ble, there is a family of Euclidean solutions corresponding to elements of SL(2, Z). These

solutions are part of the same thermal ensemble. It is known that TAdS3 with parameter τ

is diffeomorphic to the EBTZ black hole with periodicity τ ′ = − 1
τ . This correspondence is

a special case of the construction outlined above. The nice feature about the latter trans-

formation is that it has a well defined continuation to Lorentzian signature. The Euclidean

action of the instantons was calculated in [29],

Sinstanton =
iπk

2

(

τ ′ − τ̄ ′) = − 2π2kβ

c2β2 + (cβµ − 2πd)2
. (2.8)

Note that the action depends only on two of the three independent paraments of SL(2, Z),

indeed the transformation τ ′ = τ + b does not change the geometry or the entropy.

At each value of τ there is a dominant phase given by the lowest (negative) action

instanton. At low temperature, β → ∞, the dominant saddle point is the thermal AdS3

solution (i.e a gas of cold particles). At very high temperature, β → 0 the dominant

saddle point has τ ′ = − 1
τ , which is diffeomorphic to the EBTZ black hole with this (high)

temperature 1/β and chemical potential µ. In the generic case there are various phases

that can dominate the path integral at intermediate value of the temperature [30, 31].

The simplest situation occurs for vanishing chemical potential µ = 0, which is what

we assume from now on in this paper. The simplifications is that there are only two

dominating phases, which are the thermal AdS3 at low temperature and the EBTZ black

hole at high-temperature. The phase transition occurs at the Hawking-Page temperature

where the Euclidean actions of both saddle points are equal

βHP = 2π. (2.9)

2.2 The partition function

A comprehensive quantization of String theory on AdS3 background was accomplished

in [32 – 34]. In these series of beautiful papers the authors analyzed the SL(2, R) WZW

model (at level k) describing strings propagating in AdS3 × M, where M is an internal

CFT which makes the theory critical. The Hilbert space of the SL(2, R) WZW model is de-

composed into representation of the left/right-moving current algebra ̂SL(2, R)× ̂SL(2, R).

The unitary representations contributing to the spectrum are pairs of continuous repre-

sentations Cα
j=1/2+is ×Cα

j=1/2+is and pairs of lowest/highest weight discrete representations

D±
j>1/2×D±

j>1/2. This is an oscillator expansion around geodesics with mass m2 = j(j−1).

It is known that these 3 representations form a complete basis for L2(AdS3) and are part

of the Hilbert space of the WZW model. In addition to the conventional representation

discussed above, the Hilbert space contains spectral flowed representations Dω±
j>1/2×Dω±

j>1/2

and Cωα
j=1/2+is×Cωα

j=1/2+is with ω ∈ Z. These should be thought of as oscillator expansion

around long string. They furnish representations of the spectral flowed algebra,

J̃±
n = J±

n±w J̃3
n = J3

n − k

2
wδn,0.

– 6 –
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The reader is encouraged to read [32] for a complete description of the spectrum.

The SL(2, R) theory at level k has an interesting phase structure as a function of k,

all the representation discussed above exist only if 1
2 < j < k−1

2 . Thus, if k < 3 there are

no states in the Hilbert space since the vacuum5 is projected out. A detailed study of the

phase structure and its physical interpretation was conducted in [35] and references within.

The Euclidean AdS3 background is described by the H+
3 coset WZW model (at level

k). A canonical description of the model uses the Poincaré patch coordinates for thermal

AdS3,

ds2 =
k

y2

(

dy2 + dwdw̄
)

, (2.10)

where,

y =
et

cosh ρ
w = tanh ρ et+iθ w̄ = tanh ρ et−iθ. (2.11)

In [33] the partition function of the model was computed (following [36])

Z(β, µ) =
β(k − 2)

1
2

2π

∫

R

dτdτ̄√
τ2

e
4πτ2

(

1− 1
4(k−2)

)

∑

h,h̄

D(h, h̄)e2πiτ(h+h̄)

×
∑

n,m

e−kβ2|m−nτ |2/4πτ2+2π(ImUn,m)2/τ2

|ϑ1(τ, Un,m)|2
, (2.12)

where D(h, h̄) is the degeneracy of the internal6 CFT, τ is the modular parameter of

the worldsheet torus (not to be confused with the spacetime torus used above), R is a

fundamental domain of the modular group SL(2, Z) and

Un,m(τ) =
i

2π
(β − iµβ)(nτ̄ − m).

The partition function has poles in the modular parameter plane at τpole = r
w + i β

2πw for

integers r and w. These appear due to the long strings in the spectrum [33].

2.3 Singular conformal field theory

AdS3 × S3 with NS-NS background is a solvable worldsheet conformal field theory. It

has, therefore, been a useful laboratory to explore the AdS/CFT duality [1 – 3, 37]. From

the spacetime point of view, however, it is a rather complicated system which does not

conform to the standard ideas of an ordinary field theory on the boundary. The associated

pathologies will manifest themselves in the thermal AdS/BTZ discussion as well.

The pathology that will concern us the most (other pathologies are related to it), is

the fact that the conformal field theory is ”singular” [38]. The singularity is similar to the

R4/Z2 target space with θ =
∫

BS2 = 0 where the integral is on the 2-cycle at the origin,

5The vacuum is assumed to be SL(2, R) invariant. Hence, it has vanishing Casimir j(j − 1) = 0 which

implies j = 1.
6The internal CFT has central charge such that cint + cSL(2,R) = 26.
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and manifests itself in the spacetime CFT as a continuum of operators with continuous

scaling dimension. From the spacetime point of view, these operators correspond to ”long

strings” - strings that stretch around θ direction in equation (2.3) at large values of ρ,

which can continue to ρ → ∞ if their energy is above a finite threshold. Although the

proper size of the θ angle increases, and the string stretches more and more geometrically,

this effect is canceled by the B field which permeates the string and the string can still

make it to infinity.

The rest of the paper will be devoted to the tachyons that take the system between

thermal AdS3 (TAdS3) and the EBTZ black hole. Naively, and in all higher dimensions,

TAdS and Euclidean black holes differ by normalizable modes at the boundary of AdS, and

therefore they are manifestly in the same ensemble. Correspondingly, if there is a tachyon

which takes us from one configuration to the other, then it is localized in the interior of

AdS and therefore is a discrete state. This is not the case for TAdS3 and EBTZ in the

case that the background contains only NS-NS fields - the tachyons that we will encounter

(for zero angular momentum) are part of a continuum, and match on to the long string

spectrum at large values of ρ.7 Since the interpolating tachyons can make it all the way

to the boundary, and their geometry is different in TAdS3 and EBTZ (although related

by SL(2, Z) of course), there is information on the boundary that distinguishes the two

backgrounds. Correspondingly, TAdS3 and EBTZ differ by non-normalizable modes and

including them in the same ensemble is done by fiat.

Peculiar as it may sound, such pathologies are not unexpected in a theory with long

strings type ”singularities”, which are also counter intuitive from the standard UV/IR

perspective.8

In [38] it was shown that one can go away from the locus of singular spacetime CFTs

by turning on some of the moduli of the theory. In our case one goes away from the NS-NS

AdS3 × S3 background by turning on RR fluxes in the background. If the scenario that

we outlined in the paragraphs above is correct, then this deformation should also change

the continuum of interpolating tachyons into a discrete set. Deformations of this type have

been constructed in [41, 42] and it is easy to see that this is indeed what happens.

We will refer to these background as ”regulated”, and discuss their application to the

TAdS3/EBTZ transition in section 4.3. At this point we will just outline our approach.

We will work with the NS-NS background since this is the only case that we can solve

exactly, and will view the addition of R-R fields as a regulator for the behavior near the

boundary of AdS3. We are entitled to do so because in the regulated version there is no

additional pathology that arises from the vicinity of the boundary.9

7After some kinematical ”processing” that will have to do with the difference between the Lorentzian

space, where the ”long strings” are defined, and the Euclidean space, where the interpolating tachyons are

defined.
8Not to mention that these theories also exhibit (related) pathologies even below the long string gap

such as dimension zero operator which is distinct from the identity (even on the short string sector) [39, 40].
9The Philosophy is similar to the one advocated in [11] where tachyons which are localized on time like

singularities are discussed. The tachyons resolve and smooth the singularities but then expand outwards

until, at infinite time, they will reach the boundary of space. The fact that the boundary conditions change

– 8 –
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3. Hagedorn temperature

On general grounds we expect String theory in thermal AdS3 to exhibit an exponential

growth of the density of states which leads to the breakdown of perturbative String theory

at the Hagedorn temperature. In order to compute the Hagedorn temperature we use

Polchinski’s trick [43] to replace the sum over string windings n in (2.12) by the sum over

copies of the fundamental domain. This is interpreted as the summation over the spacetime

field theory one loop amplitudes followed by a summation over the number of particles.

The resulting one-loop partition function is

Z(β, µ) =
β(k − 2)

1
2

8π

∫ ∞

0

dτ2

τ
3/2
2

∫ 1/2

−1/2
dτ1e

4πτ2
(

1− 1
4(k−2)

)

∑

h,h̄

D(h, h̄)e2πiτ(h+h̄)

×
∞
∑

m=1

e−(k−2)m2β2/4πτ2 |η(τ)|4
∣

∣

∣
ϑ11

(

− imβ̂
2π , τ

)

∣

∣

∣

2 . (3.1)

The Hagedorn behavior of the partition function is manifest in the limit τ2 → 0 (in field

theory this is a UV limit.10) In this limit the partition function diverges exponentially

for β < βH , which corresponds to a Hagedorn transition at T = TH . There is another

exponential divergence for τ → ∞ due to the usual bosonic String tachyon, but it has

no temperature dependence. Poles at zeros of the theta-function are interpreted in [33] as

volume divergence due to worldsheet instantons which can make their way to the boundary.

The calculation of the leading order behavior in the τ2 → 0 limit is independent of the

value of τ1 which we set to zero. We also set µ = 0 which will be the focus of this paper.

The contribution of the internal CFT (M) is

∑

h,h̄

D(h, h̄)qhqh̄ ∼ e
πcint
6τ2 , (3.2)

combined with the contribution for the eta-functions, theta-function and exponential we

find the integrand of (3.1) behaves as

∼ exp

[

− kβ2

4πτ2
+

π
(

24 − 6
k−2

)

6τ2

]

. (3.3)

Thus, the integrand is exponentially divergent for β < βH where,

β2
H =

4π2

k

(

4 − 1

k − 2

)

, (3.4)

which signals the Hagedorn behavior of the theory. A quick check of the result is to consider

the flat space limit (k → ∞) which produces as expected the result of [10],

β
(flat)
H = lim

k→∞
kβ2

H = 16π2.

between the initial worldsheet CFT and the final worldsheet CFT (at infinite distance) is irrelevant for the

discussion of how the tachyons smooth the singularity.
10As always, this is related to an IR divergence due to a tachyonic mode by a modular transformation.
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The extra factor of k is a necessary part in the double scaling limit which gives the flat-space

geometry correctly.

As discussed in [10], the Hagedorn behavior can also be seen as the appearance of the

Atick-Witten tachyon11 in the action of a string wrapping the compact time coordinate as

we raise the temperature (shrink the time circle). A similar calculation in thermal AdS3,

where one wraps the non contractible time circle with a winding string, reproduces the

same result as the one loop partition function. We shall return to this calculation in the

sequel.

The interpretation of the Hagedorn behavior in AdS space was clarified in [6 – 8].

Starting from low temperature the stable and dominant phase is a thermal AdS which

can be viewed as a gas of strings at thermal-equilibrium. As we raise the temperature we

cross the Hawking-Page temperature where thermal AdS is no longer the dominant phase

but it is meta-stable. If we continue to raise the temperature forcing the system to stay

in the thermal AdS state (i.e an overheated AdS) we are bound to reach the Hagedorn

temperature where the thermal AdS system develops instability in perturbations theory

and the system flows to another phase. For AdS3 with vanishing chemical potential the

only other dominant absolutely stable phase is the Euclidean BTZ black hole (with no

angular momentum nor any RR charge), thus, as we cross the Hagedorn temperature we

expect that the Thermal AdS3 must collapse to the Euclidean BTZ black hole.

A very interesting property, unique to AdS3, is the diffeomorphism between TAdS3

with identification τ and EBTZ with identification −1
τ , setting µ = 0 the diffeomorphism is

between TAdS3 at temperature T and EBTZ at temperature 1
4π2T

. Therefore we can move

backwards on the phase diagram just described - starting with EBTZ at high temperature

cooling the system through the Hawking-Page temperature to a overcooled (meta-stable)

EBTZ up to the point we reach yet another Hagedorn temperature where the system must

collapse to TAdS3. The complete phase diagram is sketched in figure 1.

From the EBTZ point of view there is also an analog of the tachyon winding the

time circle in TAdS3. Using the diffeomorphism between EBTZ and TAdS3 we learn that

when we lower the EBTZ temperature a string winding the angular coordinate develops a

tachyonic mode exactly where the diffeomorphic TAdS3 develops the Atick-Witten tachyon,

T (EBTZ)
c =

1

2π
√

k

(

4 − 1

k − 2

)1/2

=
4π2

T
(TAdS)
H

. (3.5)

Note that the proper size of the angular circle of the EBTZ black hole when one reaches

this temperature is of the order of the String scale. In spite of the fact we have obtained

this result from Euclidean considerations, it has an interesting Lorentzian interpretation as

well. One can continue the EBTZ black hole back to Lorentzian signature by rotating the

time circle. Near the point where the mode becomes tachyonic, the resulting black hole is

small with horizon area of the order of the String scale. Thus, we have calculated exactly

the point where the tachyon which is expected to be generically behind the horizon of the

11The best definition for a tachyon in Euclidean theory is an exponential divergence in the partition

function related to IR physics in space time.
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Figure 1: Phase diagram for the asymptotic AdS3 boundary conditions with chemical potential

µ = 0. As we explained, the EBTZ tachyon is winding around the angle of the EBTZ while

the TAdS3 tachyon winds around the compact time of the TAdS3. The various temperatures are:

T 1 = 1

2π
√

k

(

4 − 1

k−2

)1/2

, T 2 = 1

2π , T 3 =
√

k
2π

(

4 − 1

k−2

)

−1/2

.

BTZ black hole12 “leaks” outside the horizon. This is closely related to the phenomenon

discussed (mainly in the AdS5 context) in [9].

The above result is exact in α′ (equivalently in k) enabling to probe the theory in the

strongly curved limit. An immediate feature of the above formula, is the behavior for k = 3

where,

k → 3 : T (EBTZ)
c = T

(TAdS)
H = THP = 2π. (3.6)

Consequently, the region k < 3 does not make any sense physically13 because the theory

develops an instability before one reaches the phase transition point. In fact, as explained

in [35], when k = 3 the Lorentzian SL(2, R) model loses its vacuum. Therefore the inter-

pretation of the model as string propagating in AdS3 is no longer valid. It will be nice to

understand better the relation between these two pathologies, we further discuss this in

the next subsection.

One can analyze the properties of the Atick-Witten tachyon14 by a minisuperspace

calculation of a string winding around the time circle. The details of the calculation are

somewhat technical so we leave it to appendix A. The main result of the calculation is the

eigenvalue equation describing the mode (A.6),

EΨ(ρ) =
1

2k

[

−∂2
ρ − 2 coth(2ρ)∂ρ +

(

βk

2π

)2

− a

]

Ψ(ρ), (3.7)

where a is related to the zero-point energy constant. It is calculated, by employing canonical

quantization, in appendix A as well. The winding string moves in a potential which is

12Due to the orbifold singularity behind the horizon.
13Naively, one expects the theory to break down at k = 2 where the energy momentum tensor ceases to

exist but not before.
14We thank S. Minwalla for very instructive discussions on this point, and in particular on the delocal-

ization of the tachyon.
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bounded at infinity. While naively from the metric one expects an infinitely high potential

as ρ → ∞, the presence of the B-field in the background cancels the e2ρ term coming

from the geometry. At large ρ the wave function of the winding mode has the following

dependance (see (A.7))

Ψj(ρ) ∼ e+2jρ j = −1

2
+ is Ej =

1

2k

(

−4j(j + 1) +
β2k2

4π2
+ a

)

, (3.8)

where s is a real parameter. After fixing the constant a, one discovers that at the Hagedorn

temperature β = βH the lowest mode (s = 0) has exactly zero energy E−1/2 = 0. It is

important to note that the winding mode is delta-function normalizable.15 This indicates

that the condensation of this mode is not a strictly local process. As we discussed in

section 2.3 this oddity is related to the fact that the spacetime CFT is singular, and it is

removed when the background is appropriately regulated.

3.1 More on k = 3

As argued above, the ensemble does not have sensible thermodynamic properties below

k = 3. This fits well with the fact that the Lorentzian vacuum of SL(2, R) does not exist

below k = 3, but one can be more precise. A host of special effects which take place at

k = 3 were discussed in [35].16 In addition to projecting out the vacuum, it was found

that the BTZ black hole becomes non normalizable and that the correct description below

k = 3 is by weakly coupled long strings (one can also check that the gap for long strings

disappears when k = 3).

This culmination of observations makes the connection to our result more obvious.17

For k > 3, the thermodynamic description is the standard one, as depicted in figure 21. A

generic high energy state is the black hole, and the gas of particles ceases to exist beyond

the Hagedorn temperature. When k = 3, the states smoothly go over to each other, and

it is manifest that the Hagedorn and Hawking-Page temperatures match. This situation is

depicted in figure 2b. Lastly, the only thing that can happen below k = 3 and be consistent

with everything said above is that the BTZ black hole can never be reached (the system

has a physical limiting temperature), and a generic state is just a weakly coupled long

string. This is displayed in figure 2c where the line of putative black holes, above a gap

in temperature, is also exhibited (of course, it can never be reached) for making it easy to

visualize how the transition18 at k = 3 occurs.

4. The competing winding modes picture

TAdS3 and EBTZ are different ways of extending the S1 × S1 boundary to a 3 dimen-

sional manifold. In the two cases, one fills different S1’s into a disk D2. When one of

15In the Klein-Gordon norm there is a volume factor ∼ sinh(2ρ) that cancels the exponential decay of

the wave function.
16These effects are associated to the black hole/black string transition which occurs exactly at k = 3.
17We are grateful to O. Aharony for discussions on this point.
18From a system that has no limiting temperature to one that has.
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(a) k > 3 (b) k = 3 (c) k < 3

Figure 2: The vertical axis is the temperature of the system and the horizontal axis is the typical

energy of an excitation. We exhibit the transition in the form of the phase diagram from k > 3 to

k = 3 and finally to k < 3. The most dramatic change is the appearance of a limiting temperature

when k < 3, which is closely related to the fact that typical high energy excitations are not black

holes anymore but long fundamental strings.

the backgrounds becomes unstable, an Atick-Witten tachyon appears which is a winding

mode on the non-contractible circle. Hence, the flow dynamics is controlled by a compe-

tition between a geometric capping, by D2, and a Stringy capping, by a winding tachyon.

Fortunately, as we will discuss in this section, in String theory these two ways of capping

are indistinguishable (in a very precise technical sense). This becomes apparent in a dual

formulation which contains a sine-Liouville (s-L) theory, and is the main motivation for

investigating this relation.

The picture we will end up with consists of two deformations of linear dilaton by s-L

walls, whose profile grows as we go into the bulk of space. They both tend to shrink their

respective circles. The one with the larger coefficient on the worldsheet ”wins” and caps

its circle first. The problem of quantifying the phase transition is now just a problem

of comparing the coefficients of two operators on the worldsheet. Further, we show that

this perturbation of s-L becomes the Atick-Witten tachyon vertex operator exactly at

the Hagedorn temperature. Consequently, the issues of geometric capping and tachyon

condensation are closely related in our backgrounds.

This approach also provides information about the CFT that corresponds to the un-

stable fixed point ”between” the EBTZ and TAdS3 (the sense in which this is ”between”

the two phases will be specified precisely). This is discussed in section 5.

Intuitively, the idea is as follows. Thermal AdS3, in which the disk fills up the angular

direction, is represented in figure 3a. Suppose the temperature is high enough so that a

tachyon develops on the non contractible circle. On general grounds, one would expect

the thermal circle to pinch and the space to cut and begin from some larger value of the

radial coordinate ρ ≥ ρ0. The resulting space is easy to visualize. It has a contractible

thermal circle and a non contractible angular variable. This is precisely what we need for a

Euclidean black hole. Indeed, the Euclidean BTZ black hole (whose topological structure

is exhibited in figure 3b) is our candidate for the end point of tachyon condensation.

The picture is reversed when we consider a very cold Euclidean BTZ black hole-
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(a) Thermal AdS3 (b)Euclidean BTZ

Figure 3: The topological structure of thermal AdS3 on the left and Euclidean BTZ black hole

on the right. The non contractible circles are the thermal (time) circle for TAdS3 and the angular

(spatial) circle in EBTZ.

the disk fills the Euclidean time circle and the tachyon develops along the angular circle

contracting it. Therefore, tachyon condensation switches the topology to that of a TAdS3.

However, we will see that the dynamics is not so simple. As in the C/ZN case con-

sidered in [11], there is a need for an outgoing shell to change some boundary conditions

at infinity (after infinite RG flow time). Otherwise, the flow can not end in a smooth

background. The physics we find here is very similar in some respects.

For convenience we outline the procedure we employ to derive our dual description

• Begin with either TAdS3 of EBTZ (the end result will be the same).

• By twice T dualizing non contractible circles, we write the background as SL(2,R)
U(1) ×

U(1). This is done in section 4.2.

• Using FZZ duality (reviewed in section 4.1), the latter is a linear dilaton theory

perturbed by a winding mode condensate, a ”wall”, in the bulk. The geometric cap

is replaced by a winding mode cap.

• The model is now a linear dilaton with two circles and a winding mode condensate

on one of them. If one is at the Hagedorn temperature, turning on the Atick-Witten

tachyon on the Euclidean time direction amounts to turning on another sine-Liouville
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interaction on the other circle. The picture is now completely symmetric between

the spatial and time circles where there are two vertex operators of the same kind.

In the range of temperatures in which both TAdS3 and EBTZ are perturbatively stable,

the thermodynamic description (see figure 21) suggests that there is an unstable fixed

point between these two stable fixed points. One can guess how to construct this unstable

point.19 What we have basically done is to describe two distinct ways to cap, in a non

singular way, the model linear dilaton×S1×S1. In TAdS3 we have filled with a disc one of

the circles while in EBTZ we have filled with a disc the other. To obtain the intermediate

point one needs to treat the two circle more symmetrically. One can either

• Not cap either of the circles. In this case the model is simply linear − dilaton × T2.

This point does not exist in the space of perturbative String theory. It may exist once

non-perturbative effects are taken into account (similar to the distinction between

LST and DLST backgrounds [44 – 47]).

• Cap both circles at the same time. If one can truncate the dynamics to the coefficient

of the two sine-Liouville interaction then such a point must exist simply because there

must exist an unstable fixed point between two stable fixed point if there in one real

parameter.20 This capping is perturbative in gs.

• Some other way of capping, such as a Liouville cap (without winding condensation).

We return to the question of constructing the unstable phase in section 5. In section 4.3, we

discuss a way to regulate the singularities reviewed in section 2.3 and explain the physical

consequences of such a regulator.

4.1 A review of the FZZ duality

The FZZ duality, first conjectured by V.Fateev, A.Zamolodchikov and

Al.Zamolodchikov [24], is a correspondence between the SL(2)k/U(1) coset CFT

and sine-Liouville theory (see [48 – 51] and references therein for relevant works on the

subject). We shortly review the duality following [48].

The SL(2)k/U(1) coset CFT [52 – 54] also known as the 2-dim Euclidean black hole or

cigar model, describes the geometry

ds2 = k
(

dr2 + tanh2 r dθ2
)

Φ − Φ0 = −2 log cosh r, (4.1)

where θ is a periodic coordinate θ ∼= θ + 2π and r ranges from 0 to ∞. At the boundary

of space, r → ∞, the model reduces to a product of a linear dilaton and a circle, and at

the tip of the cigar, r = 0, the circle pinches. The geometry is smooth everywhere, and the

String coupling gs = eΦ0 at the tip is finite. The level k is a free parameter which governs

the size of the cigar. The mass of the underlying Lorentzian black hole is related to the

String coupling at the tip of the cigar M ∝ e−2Φ0 .

19Of course, the fact it is unstable at intermediate temperatures implies that it should be, in some sense,

a singular solution. This is analogous to the small black hole in the AdS5 ensemble.
20We will see that the situation is slightly more complicated than that.
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The central charge of the cigar CFT (4.1) is,

c =
3k

k − 2
− 1. (4.2)

For the special case k = 9
4 the solution is a two dimension bosonic String theory dual to a

c = 1 matrix model. For larger values of k one needs to multiply the model by a suitable

CFT to complete the central charge to 26. An important set of observables corresponds to

momentum and winding modes on the cigar Vj,mm̄. These have scaling dimensions

∆j,m,m̄ = −j(j + 1)

k − 2
+

m2

k
∆̄j,m,m̄ = −j(j + 1)

k − 2
+

m̄2

k
. (4.3)

The parameters m, m̄ are related to the winding and momentum quantum numbers around

the θ circle at large r,

m =
n + wk

2
m̄ = −n − wk

2
n,w ∈ Z. (4.4)

The geometry of the cigar, which is topologically a plane, makes it obvious that the cigar

background conserves only the momentum m − m̄ and not the winding m + m̄,

String perturbation theory (genus expansion) is an expansion in e2Φ, which can be

thought as an expansion in the String coupling at the tip e2Φ0 ∼ 1
M . The geometry has

radius of curvature k, and thus the worldsheet is weakly coupled for large k. However the

coset model is well defined for small values of k as well.21

The dual sine-Liouville theory is defined by the 2-dim Lagrangian density

4πL = (∂φ)2 + (∂x)2 + QR̂φ + λebφ cos R (xL − xR) , (4.5)

where the x direction is periodic with

x ∼= x + 2πR R =
√

k, (4.6)

and the theory has a linear dilaton Φ − Φ0 = −Q
2 φ. The central charge of this theory is

c = 2 + 6Q2. Comparing with (4.2) we set,

Q2 =
1

k − 2
. (4.7)

The s-L interaction is the lowest lying winding mode (winding number equals one) around

the circle x, the exponent b is fixed by requiring that the interaction is marginal,

1

4
R2 − 1

4
b(b + 2Q) = 1 ⇒ b = − 1

Q
= −

√
k − 2. (4.8)

There are two inequivalent models: λ 6= 0 and λ = 0. In the first case, the coefficient

λ > 0 can be rescaled to any other positive value by a shift in φ (and re-absorbed in the

String coupling). If we set λ to zero we are left with the linear dilaton theory (with the

21There are some 1
k

corrections to the action, as explained in [55].
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coupling diverging at φ → −∞) which is ill defined in perturbation theory. In [48] the

authors treated the s-L theory as a perturbation of Liouville theory, i.e adding a Liouville

potential µLφ e−2φ and treating λ as a perturbation. Varying the radius R of the x circle

they found that at a critical of radius R =
√

k one can take the limit µL → 0 with no

singularities.22 Naively, the s-L theory has an infinite coupling region (φ → −∞), but the

interaction terms generates a wall preventing particles from reaching the strong coupling

area (similar to the cosmological constant potential µLφe−2φ in the more familiar Liouville

theory).

Wave functions of s-L theory behave at large φ as

Ψ(φ) ∼ e

“

Q− 1
Q

”

φ
. (4.9)

At large k the wave function Ψ goes rapidly to zero at the weak coupling area (φ → ∞),

thus, the theory is effectively strongly coupled. On the other hand if k → 2 (Q → ∞) the

wave function Ψ is supported at large φ away from the potential wall. Consequently, s-L

theory is strongly coupled when the cigar CFT becomes weakly curved and vice-versa.

The observables Vj,m,m̄ of the cigar are mapped to vertex operators of s-L which have

the following large φ behavior (for large k this is simply the requirement that the asymp-

totics of the vertex is the same):

Vj,m,m̄ ↔ eipLxL+ipRxR+βφ, (4.10)

with

pL =
n

R
+ wR pR =

n

R
− wR β = 2Qj.

At large φ and r (φ, r → ∞) both s-L theory and the cigar model describe a cylinder with

linear dilaton implying the identification (at large k)

r ∼ −Qφ θ ∼ x√
k
. (4.11)

FZZ duality is the statement that the cigar coset model and s-L theory are exactly equiv-

alent as conformal field theories. As explained above, this is interpreted as a strong-weak

duality of the worldsheet theories.

S-L correlation functions have a KPZ behavior [56] implying that the partition sum

has the following genus expansion,

F(λ, gs) =

∞
∑

h=0

Fh

(

gsλ
− 1

k−2

)2(h−1)
. (4.12)

Thus, gsλ
− 1

k−2 is an effective String coupling and one can set gs = 1 for convenience.

On the other hand, genus expansion of String theory on the cigar is related to the String

22The calculation in [48] was done only for k = 9/4 due to the technical need of using matrix model results.

The fact there is an effective wall due to the s-L interaction is well established for any k by investigating

three point functions (for more details see [49] and references therein).
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coupling at the tip of the cigar g2
s ∼ 1/M (where M is measured in planck units). Therefore

in the FZZ duality the correspondence of the genus expansions suggests,

M ↔ λ
2

k−2 . (4.13)

There is no complete proof of the bosonic conjecture (see [57] for recent review), but

strong evidence comes from comparison of 2-pt and 3-pt functions. The supersymmetric

version of the duality is given in [46], Hori and Kapustin [58] used gauged linear sigma-

model techniques to show that in this case the duality is an example of mirror symmetry.

For recent discussion on the supersymmetric duality and it’s relation to the bosonic con-

jecture see [59 – 61]

4.2 TAdS3 and EBTZ using FZZ duality

4.2.1 Step 1: The background as cigar × S1

Recall the solution of the thermal AdS3 background23

ds2 = k
(

dρ2 + cosh2 ρ dt2 + sinh2 ρ dθ2
)

+ ds2
⊥

B(2) = −2ik sinh2 ρ dt ∧ dθ

eΦ = gs, (4.14)

with the identifications

θ ∼= θ + 2π , t ∼= t + β. (4.15)

The B-field is imaginary since it is an analytic continuation of a real B-field in Lorentzian

space. We T-dualize [62] the non contractible time circle to obtain

ds2 = k
[

dρ2 + tanh2 ρ( dθ − i dt̃)2 + dt̃2
]

+ ds2
⊥

B(2) = 0

Φ′ = log(gs) − log
(

cosh2 ρ
)

− log

(

kβ2

4π2

)

, (4.16)

with the identifications,

θ ∼= θ + 2π , t̃ ∼= t̃ +
4π2

kβ
. (4.17)

Note that some key features in the geometry at infinity have apparently changed.

In (4.14), the boundary is only conformal to T2 with a scale factor that diverges at infinity.

In (4.16) the metric of the boundary, in the String frame, is a finite T2. The interpretation

of this result is that in the original picture, (4.14), the energy of winding strings that go

to the boundary is a finite constant (this is derived in a mini-superspace framework in

appendix A).

The background in the ρ-θ plane is the familiar Euclidean cigar background (also

known as the 2-dim Euclidean black hole) studied in [52 – 54], if we define dχ = dθ − i dt̃

23We use the wedge product normalization a ∧ b = 1
2
(a ⊗ b + b ⊗ a).
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and treat it as if it has the usual reality condition of a real scalar.24 We can then use

known results about the cigar. For example, as a quick check, one can compare the central

charge of the cigar × S1 background with the central charge of TAdS3,

c(AdS3) =
3k

k − 2
= 3 +

6

k − 2
c(cigar×S1) =

(

2 +
6

k − 2

)

+ 1.

This is, of course, not surprising.

Next, we apply another T-duality in the decoupled t̃ circle direction (such that the dχ

direction not effected by the transformation), we find the following background (denoting

the T-dual coordinate to t̃ by ϕ)

ds2 = k
(

dρ2 + tanh2 ρ dχ2 + dϕ2
)

+ ds2
⊥

B(2) = 0

Φ′ = log(gs) − log
(

cosh2 ρ
)

⇒ g′s = gs

/

cosh2 ρ, (4.18)

with the identifications,

χ ∼= χ + 2π , ϕ ∼= ϕ + β. (4.19)

Our result can be summarized as follows

TAdS3 =

(

SL(2, C)k
SU(2)

/

U(1)

)

× U(1)β, k, (4.20)

where the notation U(1)β, k is there to remind us that the inverse temperature is β but

the proper size of the decoupled circle is β
√

k. This decomposition is similar to the one

suggested in [63] for the Lorentzian signature backgrounds. One immediate surprise is

encountered if one tries to repeat this exercise in the case of the EBTZ black hole. The

easiest way to do it for the black hole is to exploit its equivalence to a Thermal AdS3 with

a different temperature,

EBTZ =

(

SL(2, C)k
SU(2)

/

U(1)

)

× U(1)4π2/β, k. (4.21)

In both (4.20) and (4.21), the asymptotic form of the metric is just linear− dilaton×
S1 × S1. For both TAdS3 and EBTZ one pinches the circle of proper size 2π

√
k and the

other remains intact. However, the decoupled circles have different proper size at infinity.

This is surprising at first sight, since one expected TAdS3 and EBTZ to be in the same

thermal ensemble (when they have the same temperature). Indeed, they are in the same

ensemble when one does pure gravity. String theory, on the other hand, clearly has a non

normalizable mode distinguishing the two backgrounds. This is disguised in the original

description but it is manifest in this T dual frame, where this non normalizable mode is a

proper size of a free circle at infinity.

Thus, it appears that TAdS3 with modular parameter τ and TAdS3 with modular

parameter −1
τ are not in the same thermal ensemble in the framework of String theory.

24One can write down the dictionary for vertex operators, taking this factor i into account. However, we

will not need to deal with it for a reason which will soon become clear.
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One would like to have an understanding of this pathology in the original frame as well.

The naive way to characterize this is to recall that long strings (in the original frame) have

constant energy potential near the boundary. The value of this constant is different in the

two backgrounds as can be seen from the explicit computations in appendix A. There is a

more elegant description in the original frame which is explained in the sequel.

Consider the asymptotic form of TAdS3, keeping the first sub-leading correction to

the B field

ds2 ≃ k

(

dρ2 +
e2ρ

4
dt2 +

e2ρ

4
dθ2

)

B(2) = −2ik

(

e2ρ

4
− Λ(TAdS)

)

dt ∧ dθ. (4.22)

where Λ(TAdS) = 1
2 . The identifications of TAdS3 with modular parameters τ and −1

τ are

respectively

TAdS3 : t ∼= t + β θ ∼= θ + 2π

EBTZ : t ∼= t +
4π2

β
θ ∼= θ + 2π.

We can bring the two conformal T2’s to have the same periodicities by a shift in ρ, however

this shift changes the constant in the B-field. For concreteness shifting ρ in EBTZ results

in

ρ → ρ + log
2π

β
⇒ Λ(EBTZ) − Λ(TAdS) =

1

2

(

β2

4π2
− 1

)

. (4.23)

One could think that this constant mode of the B field is a an unphysical pure gauge

mode. This is not true in the thermal case since the integral
∫

T2

B

plays the role of a generalized Wilson line, which has a physical effect on the spectrum of

strings. Thus, the calculation above suggests that the invariant way to characterize the

non normalizable mode which distinguishes the two backgrounds is indeed
∫

T2 B. This fits

well with the previous explanation involving the potential energy of long strings, since it

is exactly this Wilson line which sets this constant.25

For completeness, it remains to show explicitly that this constant translates directly

to the volume of the two torus in the T dual frame. To demonstrate this, we begin with

the TAdS3 metric with the undetermined constat Λ in the B-field

B′
(2) = −2ik(sinh2 ρ + δΛ) dt ∧ dθ. (4.24)

As before, we first T dualize the non contractible Euclidean time direction and get the

following metric (with B = 0)

ds2 = k

[

dρ2 +

(

dt̃ − iδΛ dθ
)2

cosh2 ρ
− 2i tanh2 ρ dt̃dθ + tanh2 ρ(1 − 2δΛ) dθ2

]

+ ds2
⊥. (4.25)

25Note that this mode exists only near the boundary of space, since in the full background, of the circles

of the two torus in contractible.
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We define new complex coordinates

χ =
√

1 − 2δΛ θ − i
t̃√

1 − 2δΛ
t̃′ =

t̃√
1 − 2δΛ

.

Repeating our procedure we apply a second T-duality on the new t̃′ to find the a deformed

cigar background

ds2 = k

[

dρ2 +
1 − 2δΛ

(1 − δΛ)2 − δΛ2 tanh2 ρ

(

tanh2 ρdχ2 + dϕ2
)

]

+ ds2
⊥

B(2) = −2ik
(1 − δΛ)δΛ

(1 − δΛ)2 cosh2 ρ − δΛ2 sinh2 ρ
dϕ ∧ dχ

Φ′ = log(gs) − log
(

cosh2 ρ
)

− log

(

1 +
δΛ2

(1 − 2δΛ) cosh2 ρ

)

+ log(1 − 2δΛ)

χ ∼= χ + 2π
√

1 − 2δΛ ,

ϕ ∼= ϕ + β
√

1 − 2δΛ. (4.26)

A fast consistency check is to verify that for δΛ = 0 the above result is the same as (4.18),

i.e the usual cigar metric.26

To prove our assertion of the relation between the B field in the AdS3 picture and

the asymptotic volume in the T dual frame we analyze the asymptotic form of (4.26), the

B-field vanishes and the asymptotic behavior of the metric is that of a T2 with radii

Rχ =
√

k
√

1 − 2δΛ Rϕ =
√

k
β

2π

√
1 − 2δΛ,

which is the original torus rescaled by
√

1 − 2δΛ , as claimed.

Consequently, the Euclidean BTZ black hole and TAdS3 have different asymptotic

values of the generalized Wilson lines, which inevitably leads to a non normalizable mode

distinguishing them. This prevents any possible RG flow which takes finite RG time from

the usual black hole and TAdS3. However, there can still exist flows which emit a propa-

gating shell affecting some boundary conditions as in [11]. Note that if we are exactly at

the Hawking-Page temperature, then this difference does not exist.

The implication of our result to Lorentzian physics requires clarification. The integral
∫

T2 B has no analogue in the Lorentzian case since the time coordinate is non compact.

In particular, there is no obstruction for creating in a hot Lorentzian AdS3 an excitation

which is the BTZ black hole. The correct interpretation of our result is that the thermal

ensemble of this system is somewhat pathological, and should be considered with care. The

micro-canonical ensemble, on the other hand, follows the standard expectations.

This brings us to the need of establishing deformations of the model which have sen-

sible canonical thermodynamic descriptions. It is in these cases where everything one

26The metrics we obtain with such T dualities are always not real, but can be made real by analytically

continuing the Euclidean time. In particular, the background above, if continued to Lorentzian signature

is a perfectly well defined solution to the equations of motion, and is worth understanding better. It is

interesting that one can generate non trivial solutions in the T dual frame by dialing a seemingly trivial

mode in the original frame.
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expects from this system is satisfied without subtleties. We discuss such a deformation in

section 4.3.

4.2.2 Step 2: FZZ duality on the cigar

So far we have written the background as cigar × S1. We still have two kinds of caps -

one is geometric (the cigar pinching) and the other via a condensing winding mode on the

separate S1. In String theory, however, these two kinds of caps are the same. The cleanest

example is the FZZ duality (which we reviewed before).

Applying the FZZ duality to the cigar metric, we find the s-L lagrangian (with addi-

tional circle),

4πL = (∂φ)2 + (∂x)2 + (∂ϕ)2 + QR̂φ + λebφ cos Rx (xL − xR) . (4.27)

The central charge of this theory is c = 3 + 6Q2, the dilaton slope is

Φ − Φ0 = −Q

2
φ Q2 =

1

k − 2
. (4.28)

The radii of the circles x and ϕ are

x ∼= x + 2πRx Rx =
√

k

ϕ ∼= ϕ + 2πRϕ Rϕ =
β
√

k

2π
, (4.29)

and the exponent b calculated in (4.8). We adopt the view of [48] defining the s-L theory

as the µL → 0 limit of a Liouville theory with a s-L interaction.

The s-L interaction term in (4.27) is clearly a winding mode on the x circle. Tracing

back the FZZ and T dualities, the winding around the non contractible time circle (which

the Atick-Witten tachyon of TAdS3 winds around above the Hagedorn temperature) is

related to winding around the ϕ circle in the s-L theory.27

The picture now is more symmetric - both circles can be capped with winding mode

condensation. Roughly, one can consider the more general deformation of the two circles

by

L = L0 + λ1e
b1φ cos Rx(xL − xR) + λ2e

b2φ cos Rϕ(ϕL − ϕR), (4.30)

where L0 is the linear−dilaton×T2 lagrangian, and the values of b1 and b2 are determined

by the marginality requirement (at tree level)

1

4
R2

x − 1

4
b1(b1 + 2Q) = 1

1

4
R2

ϕ − 1

4
b2(b2 + 2Q) = 1 . (4.31)

We can shift φ to change both coefficients λ1 and λ2 and only the ratio η = λ
1/b1
1 /λ

1/b2
2

has physical significance. Allowing the two deformation theory (4.30) to flow to its IR

fixed point we expect that, for generic value of η, one of the deformations dominates over

the other, driving the other to zero (and shrinking the S1 around which the dominant

27The mapping of these states is exact and does not involve subtleties in the mapping of the corresponding

vertex operators.
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perturbation winds). Simply, the deformation whose associated wall is closer to the weakly

coupled boundary is expected to dominate.

The analysis whether such a flow generates propagating waves which can, after infinite

RG time flow, change the boundary conditions (namely the proper size of the circles) is left

for future work. It would also be interesting to study (4.30) using perturbations around

Liouville but we leave this for future work as well. A more careful account of the possible

flows is postponed to section 5.

A special point which does not suffer from the difficulties of changing the boundary

conditions is the Hawking Page point where all the circles are of the same size. The physical

parameter is ηs = λ1/λ2, and the theory has enhanced symmetry at ηs = 0, 1,∞. We will

explore this point, and some other structures associated with constructing the unstable

phase, in section 5.

It is interesting to see how the basic physical features of AdS3 are actually encoded in

s-L theory. For instance, we would like to see how the Atick-Witten tachyon appears in the

s-L background at exactly the correct temperature. We describe the model perturbatively

in λ2 around a sine − Liouville × S1 (λ1 held fixed)

∆L = λ2V = λ2Vj,m,m̄ cos Rϕ(ϕL − ϕR), (4.32)

where Vj,m,m̄ are the vertex operator of the 2-dim s-L theory (the x − φ plane) defined in

section 4.1. The asymptotic behavior (large φ) of the operator is,

Vj,m,m̄
φ→+∞−−−−→ e

i
q

2
k
(mχL−m̄χ̄R)

1 + 2j

[

e2Qjφ + Rj,m,m̄e−2Q(j+1)φ + · · ·
]

. (4.33)

The coefficient Rj,m,m̄ is a reflection coefficient of an incoming wave e2Qjφ scattering off

the s-L interaction and returning as an outgoing wave e−2Q(j+1)φ. We are interested in

a perturbation which carries no winding and no momentum in the x circle, hence we set

m = m̄ = 0 and it is enough for us to note that Rj,0,0 6= 0.28

Since we are interested in instabilities in the interior of the space, keeping its asymptotic

form fixed, then we are allowed to insert only vertex operators V that are normalizable (or

delta-function normalizable). In the asymptotic weak coupling region we need to check:

1

g2
s

V φ→+∞−−−−→ finite. (4.34)

Using the asymptotic behavior and the linear dilaton slope we find two conditions for

normalizability

2Qj + Q ≤ 0 −2Q(j + 1) + Q ≤ 0. (4.35)

The only solution to both constraints is j = −1
2 + is for some real value of s. This is

the familiar condition that the states be delta-function normalizable in the linear dilaton

28For a detailed expression for Rj,m,m̄ and a comprehensive explanation of the reflection phenomena in

s-L see [49].
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asymptotics. From the s-L point of view it is required that the dressed V is marginal or

relevant, while Vj,0,0 is delta-function normalizable. This imposes the following restriction

on s:
1

4
R2

ϕ − j(j + 1)

k − 2
≤ 1 ⇒ Rϕ ≤

√

4 − 1 + 4s2

k − 2
. (4.36)

The smallest value of ϕ radius where such and interaction term is possible is at s = 0.

Taking this value and translating back to the coordinate conventions used for AdS3 we get

β2 ≤ 4π2

k

(

4 − 1

k − 2

)

= β2
H . (4.37)

This computation is quite suggestive. One can see many of the well known features of AdS3

space in the s-L theory. For example, the fact one is forced to consider linear combinations

of modes is much easier to interpret in the s-L language (just because there is wall from

which there is reflection). In AdS3, the need to consider linear combinations appears due

to singularities of certain wave functions in the interior. In addition, the calculation itself

is somewhat easier in the s-L language. Since there is a manifest weakly coupled region

near the boundary, dimensions can be calculated using the zero point energy of the free

theory.29

4.3 The regulated model

TAdS3 and BTZ with pure NS-NS fields are pathological in two ways. The first is that the

winding mode tachyon is delocalized and can reach the boundary. The other is that they

differ by a non-normalizable mode. These pathologies are closely related to the singularities

of this special point in the moduli space of the D1−D5 system which were discussed in [38].

Both the ”long strings” and the delocalization of the tachyon correspond to the ability of

long strings in thermal AdS3 to escape to infinity.30

Going to the T-dual picture, we have argued that the volume of this torus is related to

the asymptotic integral of the B field (which distinguishes our two phases and determines

which circle is wrapped by the delocalized tachyon). In other words, this non normalizable

mode is closely tied to the asymptotically flat potential for long strings. If the system is

regulated in a way that all the winding states are confined to the bulk of space, than there

is no measurable difference near the boundary, even not by using extended probes such as

long strings. We conclude that if there exist deformations which in effect trap such long

strings, TAdS3 and BTZ will differ by normalizable modes and would manifestly be in the

same ensemble under the usual Euclidean AdS/CFT rules.

Indeed, one can construct such examples. The D1−D5 CFT is singular on a subspace

of its moduli space [38] and one can go off this subspace with a small deformation. We

will rely on the B-field deformation constructed in [41, 42]. In the D1 − D5 system, long

29Similar calculation can also be done in AdS3, but this requires some variable change which can actually

be interpreted as T duality (see [64]).
30The two are actually more closely related. Both long strings in Lorentzian space and the Atick-Witten

tachyon in TAdS are described by a string winding one circle, and quantization on an S1
× R worldsheet

is very similar.
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strings which make their way to the boundary correspond to instantonic strings on the

T4, which is wrapped by the D5 branes, shrinking to zero size. This is a D1 brane which

becomes point like and can then leave the stack. Hence, one should prevent instantons from

shrinking. One way to do it is by turning on B field on the T4 which in effect modifies

the moduli space of instantons to that of a non-commutative T4. In the non-commutative

case, instantons cannot shrink due to the existence of a new physical scale.

Taking the near-horizon of the regulated D1−D5 system [41, 42] S-dualizing and Wick

rotating one obtains the background

ds′2str = k
[

dρ2 + cosh2 ρdt2 + sinh2 ρdθ2 + dΩ2
3

]

+
√

V

[

(1 − ǫ)2

cos2 γ
dT ′2

2 + dT 2
2

]

(4.38)

e−2Φ′

= g2
s , C ′

(2) = −2
V

g2
s

tan γ εT ′

2

F(5) = 2k

√
V tan γ

g2
s

(1 − ǫ)2

cos γ
(1 + ⋆10)

[(

−id(sinh2 ρ) ∧ dt ∧ dθ +
1

α′ εΩ3

)

∧ εT ′

2

]

dB′
(2) = 2k(1 − ǫ)

(

−id(sinh2 ρ) ∧ dt ∧ dθ +
1

α′ εΩ3

)

dT ′2
2 = dy2

1 + dy2
2 , dT 2

2 = dy3
1 + dy4

2 , εT ′

2
= dy1 ∧ dy2

1 − ǫ =

(

1 +
V

g2
s

tan2 γ

)−1/2

, 1 > ǫ ≥ 0. (4.39)

The limit γ → 0 (equivalently ǫ → 0) is the NS-NS Euclidean AdS3 solution. Consequently,

the dynamics of a long string is now governed by this modified Nambu-Goto action . We

can expand the action at large ρ and read out the potential for the long string we studied

before

VF1 ∼
∫

d2ξ

(

1

2
e2ρ (1 − α) + const + O(e−2ρ)

)

. (4.40)

Next we compactly the angles to find a deformation of TAdS3 (or EBTZ),

t ∼= t + β θ ∼= θ + 2π.

It is already clear that the long strings no longer have a flat potential. Rather, they are

confined to the bulk of space. This was the expected effect of this deformation. Hence,

small deformations of the singular point resolve the pathological non normalizable mode

which is measurable at infinity. Next carry out the same set of T-dualities.31 Writing only

the NS-NS fields and focusing on the AdS3 directions only we find the regulated cigar,

ds2 = k
[

dρ2 + v(ρ)
(

tanh2 ρdχ2 + dϕ2
)]

B′
(2) = 2ikv(ρ)ǫ sinh2 ρ

[

1 + (1 − ǫ) tanh2 ρ
]

dϕ ∧ dχ

g′s = gs
v(ρ)

cosh2 ρ

31T-dualities with RR fields are discussed in [65, 66]. It is fortunate that in our case the RR fields has

no effect in the AdS directions enabling us to use the familiar NS-NS duality formulas.
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ϕ ∼= ϕ + β ,

θ ∼= θ + 2π

v(ρ) =

[

1 − 2ǫ sinh2 ρ + ǫ2 sinh4 ρ

cosh2 ρ

]−1

. (4.41)

We will focus on the case of β close to 2π. The technical reason is the background (4.41)

has a singularity at finite ρ which is purely an artifact of the T-duality. Around β ∼ 2π

we can truncate to leading order in ǫ. We see that the volume of the torus is rescaled by

∼ (1 + 2ǫ tanh2 ρ). One can therefore glue, for the same background at large values of ρ,

an SL(2)/U(1) × U(1) -like throat for a range of values of this volume, which implies that

TAdS3 and EBTZ are in the same ensemble in this case.32

5. The middle point CFT

As discussed above, we expect (for intermediate temperatures) to find a new fixed point,

where both circles are on equal footing. In this section we suggest what this theory might

be, although more work is needed to verify this picture. We will mainly work in the

Hawking-Page temperature (2.9), where the two circles are identical and the additional Z2

symmetry simplifies the discussion, but will comment on the more general case.

We concentrate on the unregulated model since we wish to use worldsheet CFT argu-

ments. When we go to the regulated model the following changes occur

• Lines of fixed points in the unregulated model can collapse to a set of discrete points

as the spacetime regulator introduces a small flow on this line. The origin of the

small beta function is from the region where the unregulated model is glued to a new

space which takes over as one approaches the boundary of spacetime.

• RG flow which is infinite distance in coupling space turns into a finite distance flow.

The infinite distance flow is roughly similar to the flow in [11] from C/ZN to C.

Introducing the regulator is the same as focusing on the flow from C/ZN to C in

a finite region around the origin - such a region of spacetime relaxes in a finite RG

distance.

With these changes in mind we can discuss both cases at the same time. The problem

then boils down to the question of how one can cap, at strong coupling (or in the IR in the

AdS/CFT terminology), a linear − dilaton × T2 background. There are several options,

which can be located at different position along the flow. In the following, we describe and

evaluate these possibilities.

1. The maximally symmetric points. The maximally symmetric plane of fixed points

is characterized by the fact that it has an SL(2, Z) discrete gauge symmetry which acts on

the parameters of the T2 (and no other parameters transform under it), i.e., other than

32The dilaton needs to be adjusted at the point of the gluing which is possible. Also, the value of
R

T2 B

is an irrelevant perturbation from the point of view of evolution in ρ in the cigar.
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the shape of the torus the symmetry between the different directions is preserved. As

usual it is natural to take the shape modulus of T2 for this class of theories to live in the

fundamental domain of SL(2, Z) (and of course there is still the volume modulus). The

only known candidate for this theory - and one that should be considered since it has the

right boundary condition to be included in the ensemble - is Liouville × T2. The cap is

done completely within the linear dilaton theory, and the SL(2, Z) acts as a symmetry on a

decoupled T2. Considering this theory, however, is problematic since, for the relevant values

of the linear dilaton slope, the coefficient α in the Liouville interaction eαφ is imaginary

and the interaction is part of the delta-function normalizable spectrum.

If such a theory can be defined, then it is defined for any value of µL - the coefficient of

the Liouville interaction on the worldsheet. Usually, this value is considered inconsequential

as it can be changed by shifting the linear dilaton coordinate ρ. However, in our case one

has to keep it as a modulus of the theory since we fix the UV cut-off during a computation

(at large value of ρ).33 µL then measures the length of the throat from this cut-off. This

gives us a line of fixed points. When fixing the boundary conditions and summing over all

bulk geometries we have to sum over this line of fixed points.

It is important to emphasize that even if the CFT on the sphere is well defined for

all values of µL, the range around µL = 0 is problematic because then the coupling is

strong near the cap and one needs to evaluate higher loops and non-perturbative effects.

In particular, if the integral over µL diverges for µL ∼ 0, these strong coupling effects are

dominant. The point µL = 0 itself - i.e. linear − dilaton × T2 - certainly does not exist as

a perturbative String background. One can estimate whether the behavior near µL ∼ 0 is

indeed problematic, since then the throat is long (even in the regulated model) and the µL

dependence of correlation functions dominated by the throat is governed by a KPZ scaling

similar to (4.12). We leave this to future work.

The suggestion here is in the same spirit as in [67], which treats the Horowitz-Polchinski

correspondence principle [68, 69] from a worldsheet point of view (for a specific class of

black holes). In that case, the near horizon of a black hole, in the vicinity of the black

hole/excited string phase transition, is described by an SL(2)/U(1) cigar, and all angular

information about the black hole disappears. Here we also obtain a similar throat but keep

an additional S1 which can encode angular information (since the chemical potential is

encoded in the shape of the T2).

2. A partially symmetric point. In the language of the Euclidean instantons described

in section 2.1 the transformation that interchanges EBTZ and TAdS3 , is τ ′ = − 1
τ . At the

Hawking page temperature τ = i and the transformation is a Z2 symmetry of the boundary.

The symmetry is broken in the interior of space by the choice of which circle contracts.

One can ask whether there is a symmetric point which respects this Z2 symmetry.

Our conjecture for the Z2 symmetric point is to take (4.30) and set λ1 = λ2 (remember

that Rx = Rφ in this point of moduli space), i.e.,

λebφ (cos R(xL − xR) + cos R(ϕL − ϕR)) , (5.1)

33Phrased in another way, we fix the value of gs at the cut-off point.
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λ1/λ2 = 0 λ1/λ2 = 1 λ1/λ2 = ∞

µ
L

0

λ1/λ2 = 0 λ1/λ2 = 1 λ1/λ2 = ∞

µ
L

0

λ1/λ2 = 0 λ1/λ2 = 1 λ1/λ2 = ∞

(a) (b) (c)

Figure 4: The three possible flow patterns at the HP temperature. Figure (a) is the naive one

dimensional flow in λ1

λ2

. Figure (b) is the conjectured flow case when we include a small µL. Figure

(c) is an example of what could go wrong. In the latter λ1 = λ2 is not a fixed point

where b is determined by fixing the scaling dimension and R is the radius obtained using

FZZ duality. SL(2, Z) is still a discrete gauge symmetry but now it acts on the shape

modulus of the T2 and on the two cycles on which we chose to turn on the s-L interaction.

The fundamental domain of this theory is now larger than the fundamental domain of

SL(2, Z).

We would like to emphasize again that this is a conjecture, as it is not clear that this

theory exists. For examples the techniques of [48] cannot be applied in any simple way.

Hence, we will have to argue its existence indirectly as follows.

If we can restrict our attention to the two operators in (4.30), which we can for λ1 ≪ λ2

(or λ2 ≪ λ1), then the existence of an unstable fixed point at λ1 = λ2 is guaranteed. The

flow is then depicted in figure 4a. However, it is not clear that one can restrict to only

these two operators. If we follow [48] then there are at least three operators which play

a role. In addition to the two sine-Liouville interactions in (4.30), one also expects that

a Liouville interaction could be turned on (we will denote the coefficient of the latter µL

here as well). If λ1 = 0 (or λ2 = 0) FZZ duality conjectures that we can set µL = 0

(as was shown explicitly for k = 9/4 in [48]). For µL very small, such that the Liouville

cap is behind the sine-Liouville i.e. deeper into the strong coupling area, we expect µL to

be irrelevant. This describes the shaded areas in figure 4b. Note however that close to

the entire µL = 0 line (i.e. µL ≪ max(λ1, λ2)) the Liouville interaction cap is behind the

sine-Liouville combined cap. Hence we expect that the Liouville interaction will always be

irrelevant for small enough µL, which gives the entire 4b phase diagram and an unstable

fixed point at λ1 = λ2, µLiouville = 0.

These arguments implicitly assume that certain orders of limit do not matter (for

example if we follow [48], which is applicable only for k = 9/4 to start with, where one

starts with small λ and resums the expansion in this parameter) and that no additional

operators can appear in front of the s-L caps. Hence it is suggestive, but not a rigorous

argument.

It is also interesting to see what other middle point CFTs can be obtained by using

other caps - i.e. by taking, in the asymptotic linear dilaton × T2 some other operators

from the T2 and dressing them by an operator from the linear dilaton, which grows in the
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strong coupling region. The most natural example would be to take the Poincaré patch.34

We begin with the following Euclidean metric, which is a solution of GR,

ds2 = k

(

dρ2 +
e2ρ

4
dθ2 +

e2ρ

4
dt2

)

B(2) = − ik

2

(

e2ρ − 2
)

dt ∧ dθ

eΦ = gs

t ∼= t + β , θ ∼= θ + 2π. (5.2)

In the above we kept the constant term in the B-field, which plays an important role in

our backgrounds, as is clear by now. This solution has the same symmetry pattern of the

Liouville theory. We have chosen this specific B field since it is the one that corresponds

to the Poincaré patch. However, as far as the behavior at infinity is concerned we could

change this value (while staying in the ensemble or in the regulated model).

Next we would like to go over the linear dilaton × T2 picture. Carrying out the

sequence of T-dualities as before we find

ds2 = k

(

dρ2 +
dχ2 + dϕ2

1 + e−2ρ

)

B(2) =
2ik

(1 + e2ρ)
dϕ ∧ dχ

Φ = log gs + log
4

1 + e2ρ

ϕ ∼= ϕ + β , χ ∼= χ + 2π. (5.3)

The geometry far away at the weak coupling ρ → ∞ region indicates a cap made out

of the volume and B-field of the T2, dressed by a profile in the Liouville direction. At

ρ → −∞ the two circles shrink while the B-field and coupling go to a constant value.

Since the circles shrink exponentially, it is not clear how to analyze this theory. We

would like however to point to the possibility that this theory flows to a Liouville theory.

The shrinking T2 could either disappear from the theory (as is the case in [67] for an S2)

or it can stabilize at some finite stringy radii (since here, unlike S2, there is a CFT for

any radii of T2) but in any case, from considering the central charge, a linear dilaton term

should be generated. The perturbation at infinity then has the right quantum numbers to

mix into a Liouville wall. We can perhaps separate the Liouville wall from where the T2

shrinks by changing the value of the B-field.

We have presented our solutions only at the HP temperatures, but similar caps can

occur for other values of the temperature as well. This allows testing our proposal by

approaching the Hagedorn temperature of AdS3 from below. As in figure 21, in this

regime the two fixed points should be close to each other, and one can hope to perform

a perturbative calculation detecting the nearby fixed point close to AdS3. This would be

especially interesting in the s-L language, where one can test these ideas explicitly.

34This analysis was also carried out by S. Minwalla.
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Figure 5: Qualitative picture of the flow between the various theories

We should mention that the role of the unstable fixed point in the case of AdS5 is

played by the small black hole which can decay to a larger black hole (which is stable at

high temperatures) or a gas of particles in AdS5 (which is stable at low temperatures). In

some sense, our solution is a small black hole as well since the time circle is contractible

and the horizon has exactly zero area.

5.1 Summary of the flows

Let us briefly summarize the flows.35 Part of this picture can be derived from considering

the free energy in the dual field theory, but now one can be more precise about the different

CFT’s in the different regimes.

The qualitative flow between the CFT’s is described in figure 5.

In this diagram the axis that goes into the page is the temperature axis. The four

temperatures regimes, separated by temperatures T1 ,T2 and T3 refer to those in figure 1.

This diagram applies for the unregulated model, and we discussed before how to pass from

it to the flow picture for the regulated model.

The relevant axis in the diagram, in addition to the temperature axis, are λ which

stands for both sine-Liouville interactions, V which denotes the volume of the T2 at infinity

and µL which is the coefficient of the Liouville interaction. We will be interested in the

regime where the Liouville wall is behind the s-L walls, hence we can set µL = 0 in the

discussion. There are 3 types of arrowed lines - red arrowed lines denote using a marginal

s-L interaction to deform the theory (and FZZ duality to write it geometrically). This is

not really a flow but a finite distance change as far as the worldsheet CFT is concerned.

Solid black arrowed lines denote ordinary CFT flow. Dashed black arrowed lines denote an

infinite distance flow which can also change the boundary conditions on the volume of the

35A boundary CFT interpretation of the phases in AdS3 was proposed in [70].
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T2. Vertical unarrowed dashed lines simply indicate lines of different V, keeping all other

parameters fixed.

The figure maps the different theories at 3 different temperatures: The HP tempera-

ture, at a high temperature (above the Hagedorn temperature) and at a low temperature

(below the dual Hagedorn temperature, where the EBTZ is tachyonic). The latter two

are of course images of each other under the exchange of EBTZ with TAdS3 and β with

inverse β.

At the HP temperature we can turn on a s-L interaction on either circles to go either

EBTZ or TAdS3. We also expect that there is a symmetric point where both caps are

turned on. From it, one can flow to either EBTZ or TAdS3.

At temperatures above the Hagedorn temperature we can go to either EBTZ or TAdS3

using an s-L interaction, but one needs to start with different values of V . This is depicted

by the red line starting at different values of V at λ = 0. The flow from TAdS3 to EBTZ

via the Atick-Witten tachyon has to change the value of V .

Tachyons can change the boundary conditions of non-compact CFTs under some cir-

cumstances. The most straightforward case are tachyons which are completely delocalized.

In this case one can condense their zero mode (the most familiar case is that of the bosonic

theory) and the entire space changes, including the behavior at infinity. Such a flow is

expected to change the central charge by the Zamolodchikov c-theorem [22]. The other

case is if they are localized but mix into the delta function normalizable states of the non-

compact CFTs. In this case a shell expands from where the tachyon is localized to the

boundary but, strictly speaking, it does not reach it in finite distance in coupling space.

This is what happens in [11] and in such cases the central charge does not have to change.

The situation here is intermediate. As we saw before we can identify the tachyon in the

delta function normalizable spectrum in sine − Liouville × S1. If we build a wave packet

out of it then we have a kind of localized tachyon, which can mix into the delta function

normalizable states of the volume mode (which are not necessarily tachyonic). The latter

will make up the shell that propagates to infinity of spacetime and eventually changes,

in infinite distance in coupling space, the asymptotic volume of the T2. This picture is

supported by the regulated model where the flow is a localized tachyon, finite distance,

flow which changes only a region of space (very similar to AdS5 × S5). As the regulator is

removed the length of the region which changes grows to infinity until it covers the entire

space suggesting an infinite distance flow in which the original tachyon mixes with the

modes described above of the volume.

Not building a wave packet but condensing the s = 0 mode is more puzzling (see

the discussion around (4.36)), and we postpone a full discussion to future work. Let

us point out however that it is not clear that discussing only this mode makes sense. In

situations where a delta-function normalizable spectrum of tachyonic operators arise due to

a translation invariance in a non-compact direction one can safely discuss the condensation

of the zero mode because then the non-compact direction decouples and one discusses a

discrete operator in the remaining CFT. This is not the case here because there is no

translation symmetry in ρ and the tachyon profile is ρ dependent. In fact, if one wants to

take the back-reaction of this field (or any wave packet) then the back-reaction is suppressed
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at large values of ρ due to the decrease in gs suggesting again the localized wave packet

construction.

6. Discussion and open questions

We suggested a unified description for geometric and tachyonic capping in String theory,

and applied it to the study of the TAdS3/EBTZ phase diagram where it turns out to be

a useful tool for understanding the intermediate worldsheet CFTs. We expect that this

technique of evaluating competing tachyon condensation, would be useful in other topology

change problems in String theory and GR. Here we used the symmetries of the problem,

such as the Z2 symmetry which interchanges the two circles, to argue the existence of a new

fixed point. But more generally one expects similar fixed points at the end of the separatrix

that separates between the phase in which one tachyon dominates to the phase in which

another does. This entails the comparison of different ”walls” made out of Liouville-like

interactions times different operators from some internal compact CFTs.

A concrete open problem is to provide more evidence for the existence of the new

conformal field theory which we conjectured to describe the unstable phase. There are

many tests one can make to check this conjecture, some of which were described in section 5.

Another open problem is that the hard dynamical part of the process - i.e., the details of

the RG flows - remains to be understood. Particularly interesting are the flows away from

the HP temperature due to the need to change a non-normalizable mode. This problem

occurs in the theory because the spacetime CFT is singular, and hence the UV/IR relation

in AdS3,NS−NS is rather unusual. In the regulated model, in which RR charges are turned

on, the UV/IR relation is the standard one, but this model is not solvable. We plan to

pursue these checks in the future.

This project started when attempting to study the Lorentzian BTZ as a global model

which realizes the time dependent Misner space or Grant space. However, already the Eu-

clidean BTZ/TAdS3 exhibits a set of poles in the partition functions which are practically

identical to the poles encountered in Misner/Grant spaces [72, 73]. In AdS3 these poles

disappear when turning on a RR fields - it would be very interesting to find out what is

the corresponding deformed model in the Misner/Grant cases.
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A. Mini-Superspace analysis of the winding string

The Atick-Witten tachyon discussed in section 3 is a winding mode around the Euclidean

time circle [10]. We apply a minisuperspace quantization of the string in thermal AdS3 to

study the properties of this mode. We use bosonic String theory and ignore the existence

of the usual bulk tachyon in the spectrum. The action of a string in thermal AdS3 is,

S =
k

4π

∫

d2σ
[

(∂aρ)2 + cosh2 ρ(∂at)
2 + sinh2 ρ(∂aθ)2 − 2 sinh2 ρǫab∂at∂bθ

]

, (A.1)

where a and b are worldsheet vector indices, ǫab is a 2-dim antisymmetric tensor. The

target space coordinates match those of (4.14). We consider a minisuperspace ansatz36 for

the winding mode,

t = t(σ2) +
wβ

2π
σ1 ρ = ρ(σ2) θ = θ(σ2) , w ∈ Z. (A.2)

The minisuperspace Lagrangian is,

S =
k

2

∫

dσ2

[

ρ̇2 + cosh2(ρ)ṫ2 + sinh2(ρ)

(

θ̇ − wβ

2π

)2

+

(

wβ

2π

)2]

, (A.3)

the dot stands for derivatives in respect of the worldsheet coordinate σ2. A canonical

quantization of the Euclidean action follows [71] (chapter 8),

vn = iẊn Pn = − ∂L
∂vn

H = L + Pnvn.

Applied to the minisuperspace action (A.3) for winding w = 1 we find the Hamiltonian37

H =
1

2k

(

−∂2
ρ − ∂ρ

(√
g
)

√
g

∂ρ

)

+
(Pt)

2

2k cosh2 ρ
+

+
1

2k sinh2 ρ

(

Pθ +
ikβ

2π
sinh2 ρ

)2

+
k

2
cosh2 ρ

(

β

2π

)2

+
a

2k
, (A.4)

with
√

g = 1
2 sinh(2ρ). The additional constant a comes by computing correctly the zero

point energy of all modes that have been integrated out (this will be carried out in the

sequel). The imaginary term in the Hamiltonian is a consequence of the imaginary B-field.

For the zero momentum case Pθ = Pt = 0 the imaginary part vanishes and the eigenvalue

equation simplifies. The regularity of the wave function on the disc ρ, θ imposes a simple

constraint at ρ = 0

∂Ψ(ρ)

∂ρ

∣

∣

ρ=0
= 0, (A.5)

36It is easy to check that the ansatz is competent with the equation of motion.
37It is important to take care of ordering ambiguities in the Hamiltonian. In the case at hand, all

ambiguities are fixed by the existence of a unique quadratic differential consistent with the symmetries.

– 33 –



J
H
E
P
1
2
(
2
0
0
7
)
0
2
0

and the eigenvalue problem is

EΨ(ρ) =
1

2k

[

−∂2
ρ − 2 coth(2ρ)∂ρ +

(

βk

2π

)2

+ a

]

Ψ(ρ). (A.6)

It is interesting that the potential energy for this winding mode is exactly constant (due to

cancelation of the winding energy by the B-field coupling). The solutions of this eigenvalue

problem are well known. Their asymptotic form and the exact eigenvalue set are38

Ψj(ρ) ∼ exp (2j ρ) Ej =
1

2k

[

−4j(j + 1) +

(

βk

2π

)2

+ a

]

. (A.7)

Remembering that there is a measure factor
√

g ∼ e2ρ in the norm formula, we arrive at

the conclusion that the allowed set of j’s is j = −1
2 + is where s is any real number. For

other cases the wave function is either not normalizable at infinity or singular at the origin.

Thus only continuum normalizable solutions exist (which in particular means that these

winding modes are not strictly localized). To reproduce the Hagedorn temperature as well

as the relevant terms in the one loop partition function, we need to compute a, which we

do in the following subsection.

A.1 Calculation of the zero point constant

To perform this computation one should examine more carefully the structure of the full

CFT, using current algebra techniques. Following [39], the worldsheet stress tensor of H+
3

is expressed in terms of affine SL(2, R) × SL(2, R) algebra currents,

Tws(z) =
1

k − 2

(

−(J3)2 + J+J−)

T̄ws(z̄) =
1

k − 2

(

−(J̄3)2 + J̄+J̄−)

. (A.8)

The currents obey the OPE,

J3(z)J±(w) ∼ ±J±(w)

z − w

J̄3(z̄)J̄±(w̄) ∼ ±J̄±(w̄)

z̄ − w̄

J−(z)J+(w) ∼ k

(z − w)2
+

2J3(w)

z − w

J̄−(z̄)J̄+(w̄) ∼ k

(z̄ − w̄)2
+

2J̄3(w̄)

z̄ − w̄

J3(z)J3(w) ∼ −k/2

(z − w)2

J̄3(z̄)J̄3(w̄) ∼ −k/2

(z̄ − w̄)2
. (A.9)

TAdS3 with parameter τ is an orbifold of H+
3 . The orbifold generators twist the currents

(

J3, J+, J−)

−→
(

J3, e−2πiτJ+, e+2πiτJ−)

. (A.10)

38We ignore the shift in k which is invisible in the simple reduction of the model we employ here.
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These monodromy conditions allow us to write the oscillator expansion of the currents in

the n-th twisted sector

J3(z) =
∑

m

J3
m

zm+1
J±(z) =

∑

m

J±
m∓nτ

zm+1∓nτ
. (A.11)

Using standard CFT techniques, we can derive the twisted commutation relations

[J3
m, J±

l∓nτ ] = ± J±
m+l∓nτ

[J−
m+nτ , J+

l−nτ ] = 2J3
m+l + δm+lk(m + nτ)

[J3
m, J3

l ] = − m
k

2
δm+l. (A.12)

From here, one has all the information needed to compute the minisuperspace Hamil-

tonian with the correct zero point energy. The ambiguity previously present is now resolved

by calculating the normal ordering of all the higher string modes and regularizing the in-

finite sum in a way consistent with the Virasoro algebra. We list the contributions to the

total zero point energy in the following:

• ghosts contribute 2/12

• the unitary CFT M adds 1
12

(

6
k−2 − 23

)

• from the Klein-Gordon equation (zero modes) we get 1
2(k−2)

• ordering of higher modes (using zeta function regularization) − k
4(k−2)

• the length of the string gives 1
2k(β/2π)2

Summing up all the contribution we find the zero point energy

1

2
k(β/2π)2 − 2 +

1

2(k − 2)
. (A.13)

This vanishes exactly at the Hagedorn temperature (3.4). One can do a little more matching

(the zero mode) pieces of the exact partition function (3.1) by calculating the partition

function of the minisuperspace model

∑

e−2πτ2H =
∑

m∈Z

∫

s∈R

dse−2πiτ2mβe−2πτ2
2s2

k−2 e
−2πτ2

“

1
2
kβ2−2+ 1

2(k−2)

”

. (A.14)

The poles are reproduced from the sum over imaginary energies, as happens in some time

dependent backgrounds [73] (see [74] for introduction to these time dependent models).The

power 1√
τ2

in the partition function is a consequence of summing over a continuum of states,

as expected.
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